По материалам журнала «Технологии строительства»
КАК ЗАЩИТИТЬ СЕБЯ ОТ ШУМА?
«Технологии строительства», №2 (15) 1999
Акустическая экология жилища начинается со знания норм. Нормативами, регламентирующими требования к звукоизоляции, являются Московские городские строительные нормы, Санитарные нормы и СНиП.
Звукоизоляция ограждающих конструкций (перекрытий, стен, перегородок, дверей и т.д.) – это способность препятствовать распространению звука, ослаблять звуковое давление (или звуковую энергию) шума, проникающего из шумного в тихое помещение. При этом различают воздушный шум, который возникает в воздухе, и благодаря воздушным звуковым волнам распространяется через ограждающие конструкции, и ударный (или структурный) шум, который возникает непосредственно в конструкциях и, распространяясь по ним, излучается в виде воздушных звуковых волн.
Нормы звукоизоляции
Рассмотрим каждую разновидность шума отдельно.
Фактическая изоляция воздушного шума зависит не только от звукоизоляционных свойств конструкции ограждения, но и от площади этой конструкции, а также от звукопоглощения поверхности стен, пола, потолка и предметов в тихом помещении. Поскольку показатели в каждом конкретном случае меняются, введено понятие звукоизолирующей способности (собственной звукоизоляции) R, которая измеряется в децибелах. Эта величина не зависит ни от площади, ни от звукопоглощения, она присуща только самой ограждающей конструкции.
Для удобства измерений мы пользуемся индексом изоляции воздушного шума. Индекс позволяет выводить усредненные величины. Так в нормативах (МГСН 2.04-97) для межквартирных стен и междуэтажных перекрытий установлены минимальные значения R равные:
54 дБ для домов категории А (высоко комфортные условия);
52 дБ для домов категории Б (комфортные условия);
50 дБ для домов категории В (предельно-допустимые условия).
Изоляция ударного шума (от ходьбы, передвижения мебели, ударов и т.п.) определяется с помощью машины со смешным названием «топальная». Она устанавливается на полу верхнего помещения. Так вычисляют уровни звукового давления Ln, дБ под перекрытием. При этом, чем выше значения Ln, тем хуже изоляция перекрытием ударного шума. Усредненные значения Ln позволяют определить индекс ударного шума под перекрытием. Ln равно:
55 дБ для домов категории А;
58 дБ для домов категории Б;
60 дБ для домов категории В.
Практические вопросы перепланировки
Как вы уже поняли, такие нормативные требования относятся к ограждающим конструкциям. Они не зависят от назначения смежного помещения соседней квартиры, будь то спальня, кухня или коридор. Однако в реальной жизни планировка, конечно, играет роль. Так, если рядом со спальной комнатой одной квартиры оказывается кухня или ванная комната соседей, уровень комфортности по шуму в первой квартире понизится. При этом жильцам будет безразлично, что стена соответствует нормативным требованиям звукоизоляции воздушного шума. Звук спускаемой воды не всегда навевает сны о Ниагарском водопаде – вот и все.
Поэтому типовые планировочные решения, как правило, хорошо продуманные и проверенные многолетней практикой, не должны без веских причин произвольно меняться. Почти всякое принципиальное изменение планировки, при котором шумное помещение одной квартиры (кухня, ванная, санузел, гостиная с аудио и видео аппаратурой, тренажерный зал и т.п.) оказывается смежным (по горизонтали или вертикали) с тихим помещением другой квартиры (спальней, кабинетом и т.п.) ведет к дискомфорту и жалобам.
Современные технологии и строительные материалы позволяют и в этом случае найти выход из положения, однако неудачное планировочное решение всегда требует больших дополнительных затрат.
Чаще всего при перепланировке жильцы хотят расширить ванные комнаты и санузлы за счет примыкающих помещений (обычно коридоров, реже кухонь). Тут надо помнить, что до настоящего времени в серийных домах эти помещения монтировались в виде готовых сантехкабин с опорой на несущие плиты перекрытий через звукоизоляционные слои (прокладки, засыпки). Зазоры между стенками и потолками кабин с одной стороны и несущими стенами и перекрытиями зданий с другой – обеспечивали изоляцию не только воздушного, но, что куда важнее, ударного и структурного шума от работы сантехоборудования. В сочетании с продуманной планировкой, при которой санузел одной квартиры примыкал к санузлу другой, а ее комнаты были удалены в глубь квартиры, это давало полный акустический комфорт.
При работах по расширению сантехузлов, как правило, приходится разбирать ограждающие конструкции сантехкабин и, тем самым нарушать звукоизоляцию. Поэтому, для сохранения нормативной звукоизоляции, необходимо вновь создать “плавающую” конструкцию пола, самостоятельные перегородки, и возможно, потолок. При этом перегородки должны устанавливаться на расстоянии от других ограждающих конструкций, опираться на плавающее основание пола и примыкать к перекрытию (потолку) через упругие прокладки с тем, чтобы исключить передачу структурного шума на несущие конструкции, по которым он легко распространяется по зданию. Чтобы избежать возникновения жестких звуковых мостиков между перегородками, полом сантехузла и другими ограждающими конструкциями нужно все трубопроводы разводки размещать внутри помещений сантехузла.
Виброизолированное крепление разводок трубопроводов необходимо для того, чтобы структурный шум от работы сантехприборов не распространялся на ограждающие конструкции и далее в смежные помещения.
Другие варианты перепланировок должны учитывать также косвенную передачу звука, например, от перегородок на перекрытия. В определенных условиях перегородка, установленная на несущую плиту перекрытия, может служить причиной ухудшения звукоизоляции между квартирами по вертикали.
Таким образом, перепланировку квартиры желательно производить на основе тщательно разработанных планировочных и конструктивных решений.
Не менее важно качественное выполнение проекта, поскольку даже незначительные отклонения от первоначального решения в процессе работы могут все испортить. Поэтому и для составления проекта перепланировки и, собственно, для работ нужны квалифицированные специалисты.
Итак
При составлении проекта перепланировки необходим тщательный анализ: как повлияют на звукоизоляцию изменения конструктивных решений ограждающих конструкций и узлов.
Соответствующий выбор материалов и конструкций позволяет сохранить или даже улучшить звукоизоляцию между квартирами и комнатами в жилых домах.
При этом необходимо тщательное исполнение проекта перепланировки квалифицированными строителями.
Подробнее узнать о существующих нормах звукоизоляции вы сможете из следующих источников:
«Допустимые уровни шума, вибрации и требования к звукоизоляции в жилых и общественных зданиях». МГСН 2.04-97. Московские городские строительные нормы. М., 1997 г.
Территориальный каталог для строительства в г. Москве. ТКТ.4.3. Строительные конструкции и изделия. Сб. ТКТ-10.
СНиП II-12-77. «Защита от шума». М., 1978.
с.н.с. Лаборатории акустики МНИИТЭП Э.М.Лалаев
АКУСТИКА ОФИСОВ
«Технологии строительства», №4 (15) 2001
Для офисных помещений наиболее важными с точки зрения акустики являются два вопроса. Это вопрос обеспечения благоприятной акустической среды в помещениях с несколькими рабочими местами и вопрос обеспечения секретности, т.е. высокой звукоизоляции помещений переговорных комнат и кабинетов руководителей.
Создание благоприятной акустической среды в помещении
Если в одном офисном помещении находятся несколько рабочих мест менеджеров, то без специальных мероприятий по обеспечению акустического комфорта в помещении не обойтись. Еще в старые добрые советские времена практически во всех бухгалтериях или отделах НИИ, где в одном большом помещении работало несколько человек, можно было наблюдать картину, когда большая комната уродливо перегораживалась различными книжными шкафами и тумбами и еще Бог знает чем. Таким образом каждый работник старался отгородиться от остальных коллег по комнате. Здесь дело, конечно, не только в акустике – играют роль и другие психологические моменты. Однако именно обстоятельство, когда из-за одного человека, разговаривающего по телефону, становилось невозможно без помех переговариваться в помещении, являлось той отправной точкой, после которой каждый начинал отгораживать себе «свое» место. И различная мебель выполняла роль акустических экранов, позволяя на рабочем месте не отвлекаться на окружающие шумы. Сегодня для создания акустического комфорта все чаще применяются офисные системы на основе мобильных перегородок высотой 1,2 – 1,8 м, формирующие звукопоглощающую среду в помещениях с несколькими рабочими местами. Наиболее эффективны в качестве акустических экранов — относительно сложные по конструкции перегородки толщиной не менее 60 мм, состоящие из двух сэндвич-панелей (МДФ – поролон – ткань), и с полым пространством, внутри которого можно скрыть всю проводку. Кроме того, комбинирование перегородок различной высоты позволяет создавать такие акустические конфигурации, когда один сектор рабочего места акустически защищен, а другой, наоборот, облегчает работу менеджера с клиентом.
На протяжении последних десяти лет в нашей стране деловая активность работников в офисе только повышается. Ведь для хорошего бизнеса совершенно нормальное явление, когда из четырех менеджеров, работающих в одном зале, одновременно трое ведут переговоры по телефону, а четвертый – энергично убеждает посетителя сделать заказ. При всем этом также желательно, чтобы руководитель и менеджеры со своих рабочих мест могли видеть друг друга, так как это, согласно распространенным западным теориям, укрепляет дисциплину, способствует взаимному контролю и тем самым повышает производительность труда.
Но если стены и потолок такого помещения выполнены из жестких, хорошо отражающих звук материалов (допустим, из окрашенных гипсокартонных листов), то посторонние для каждого работника шумы вынуждают постоянно напрягать слух и повышать голос. Также имеет место шум от большого количества офисной оргтехники, которая должна присутствовать в помещении с несколькими рабочими местами. Это, в конечном итоге, приводит к преждевременной усталости и раздражительности сотрудников к снижению производительности труда и конфликтам в коллективе.
Создание благоприятной акустической среды в помещениях такого рода решается с помощью введения в помещение офиса определенного количества звукопоглощающего материала и так называемого «заглушения» помещения. При этом подавляется требуемая часть отраженного звука, в результате чего громкость голоса и других источников шума можно уменьшить до двух-трех раз. Оставшийся прямой звук (непосредственно от источника — к уху слушающего человека) в сочетании со строго определенной частью отраженного звука обеспечивают высокую четкость и разборчивость речи, что удобно при общении менеджеров между собой. Однако, при чрезмерно высоком звукопоглощении отраженный звук может полностью исчезнуть, и звучание речи приобретет уже неприятный «ватный» оттенок, когда теряются начала и окончания фраз. Для избежания этого существуют специальные методики расчета количества звукопоглощающего материала для офисных помещений.
Традиционно в качестве основной звукопоглощающей поверхности используется пространство потолка, а в качестве звукопоглощающей конструкции – подвесной акустический потолок, имеющий ко всему прочему, множество других удобных свойств, характерных для всего класса подвесных потолков. Для такого потолка, к уже привычным функциональным свойствам: возможность монтажа в надпотолочном пространстве систем вентиляции, электрических коммуникаций и встроенных систем освещения, добавляются еще и высокие звукопоглощающие свойства.
Акустическая эффективность звукопоглощающих потолков выражается в значениях безразмерного коэффициента звукопоглощения a, который может изменяться в пределах от 0 до 1. Значение a = 0 означает полное отражение звука при a = 1 весь звук, попавший на данную поверхность, поглощается.
Также значение коэффициента звукопоглощения зависит от частоты звука. Поэтому звукопоглощающую способность той или иной модели подвесного потолка, как правило, характеризуют график или таблица для стандартного набора частот от 100 Гц до 3200 Гц. Так как характеристики звукопоглощения приводятся именно для конструкции подвесного потолка, то они справедливы только для указанных под графиком величин относа плит подвесного потолка от жесткой поверхности «черного» потолка. При этом изменение расстояния высоты подвеса напрямую сказывается на величине и частотной характеристике звукопоглощения. Так, с увеличением расстояния высоты подвеса звукопоглощение в области низких частот для акустических потолков большинства фирм-производителей возрастает. Однако некоторые фирмы-производители («Armstrong») в своих каталогах не указывают высоту подвеса конструкции подвесного потолка, поэтому при сравнении акустических характеристик потолков между собой это обстоятельство следует иметь в виду.
Для характеристики акустических свойств подвесного потолка может также применяться так называемый средний коэффициент звукопоглощения (NRC). Он рассчитывается как среднее арифметическое для коэффициентов звукопоглощения в четырех октавных полосах частот: 250, 500, 1000 и 2000 Гц, и предназначен, прежде всего, для оценки звукопоглощения в речевом диапазоне частот. Поскольку в офисных помещениях важен именно речевой диапазон, для выбора подходящей модели подвесного потолка корректно сравнивать их коэффициенты NRC. Акустический потолок может называться таковым при значениях NRC, превышающих 0,6-0,7.
К сожалению, в России большинство уже построенных офисов имеют неакустические подвесные потолки в тех помещениях, где звукопоглощающие потолки были бы чрезвычайно желательны. Всему виной — существенная разница в цене между чисто декоративными и акустическими моделями даже одних и тех же фирм-производителей. К примеру, очень широко распространенный в России (из-за своей дешевизны) потолок марки «Байкал», не имеющий даже тестов производителя на акустические свойства, почти на порядок дешевле модели акустического потолка «Armstrong Parafon».
К фирмам-производителям, специализирующимся на производстве именно акустических потолков можно отнести шведскую компанию «Ecophon», финскую компанию «Isover» (торговая марка «Ecophon»), датский концерн «Rockwool» (торговая марка «Rockfon»). Основной материал перечисленных акустических потолков — спрессованные плиты из супертонкого стекловолокна или тонкого минераловолокна. Дело в том, что на сегодняшний день – это лучшие звукопоглощающие материалы. Плиты затем окрашиваются или кашируются стеклохолстом, тканью или пленкой. Именно отделочное покрытие в большей степени влияет на характеристику звукопоглощения различных моделей акустических потолков. В общем, для таких потолков коэффициент звукопоглощения тем выше, чем лучше воздухопроницаемость (продуваемость) лицевой поверхности потолочной панели. Поэтому, при прочих равных условиях, модели с пленочным лицевым покрытием имеют заведомо худшее звукопоглощение, чем модели с окрашенной или тканевой микропористой поверхностью. Если поверхность акустического потолка пытаться окрашивать самостоятельно, то из-за закрашивания микропор звукопоглощающая способность такого потолка также может существенно ухудшиться.
Именно поэтому все акустические потолки автоматически имеют более высокую стоимость, так как их технология изготовления более сложная, а исходное сырье более качественное и дорогое.
Звукоизоляция подвесных потолков
В Европе и в США при строительстве офисов очень часто практикуется наличие общего надпотолочного пространства для группы из нескольких офисных помещений. То есть сначала в большом помещении (может быть на всем этаже здания) подвешивается подвесной потолок, а потом оно разделяется на требуемое количество больших и малых комнат посредством легких перегородок. Безусловно, здесь есть много плюсов. Например, возможность легкого и быстрого монтажа различных коммуникаций в общем надпотолочном пространстве. Вместе с тем, в таком случае подвесной потолок должен обладать дополнительными звукоизолирующими функциями, чтобы изолировать передачу звука из одного помещения в другое через надпотолочное пространство. Поэтому в каталогах фирм-производителей подвесных потолков (в том числе и акустических) появляются сведения о звукоизоляции. Здесь очень важно помнить, что звукоизолирующие способности подвесного потолка абсолютно не связаны с его звукопоглощающими (акустическими) свойствами. Для хорошей звукоизоляции плита потолка должна быть максимально тяжелой и герметичной (идеально подходит гипсовая плита с уплотнителем по периметру), а для хорошего звукопоглощения – легкой, мягкой и продуваемой. Хотя, конечно, существуют комбинированные модели подвесных потолков, где потолочная плита представляет собой сэндвич-панель, составленную из звукоизоляционного и звукопоглощающего слоев. Однако необходимо помнить, что собственная звукоизоляция потолка в дБ и коэффициент звукопоглощения потолочной конструкции a — величины, не связанные между собой и друг из друга не вытекающие.
Следует также отметить, что приведенные в каталогах данные абсолютно непригодны для оценки другой часто возникающей ситуации — дополнительной звукоизоляции существующего межэтажного перекрытия путем подвеса к нему данной модели подвесного потолка. Подобные проблемы в нашей стране возникают гораздо чаще, чем строительство офисов с общим надпотолочным пространством.
Акустические стеновые панели
Иногда для создания благоприятной акустической среды в помещении большого офиса недостаточно применения только подвесного акустического потолка. Расчет показывает, что для получения требуемых акустических характеристик помещения необходимо задействовать площади большие, чем площадь потолка. Как правило, это происходит в помещениях с очень высокими потолками. Тогда помимо подвесного звукопоглощающего потолка, а иногда и вместо него (если в силу определенных обстоятельств потолок нельзя закрывать подвесной системой), применяются стеновые акустические панели, имеющие также очень высокие характеристики звукопоглощения. Коэффициент NRC таких панелей колеблется в пределах 0,9 –0,95. Стеновые акустические панели на сегодняшний день в Россию поставляет только одна компания – шведская фирма «Ecophon».
В случаях, когда помещение большого офиса разгораживается офисными перегородками, не доходящими до потолка (чтобы стоящий человек мог видеть весь зал целиком), акустические стеновые панели применяются для облицовки таких перегородок-экранов, чтобы повысить эффект звукоизоляции между кабинами.
Звукоизоляция комнат переговоров и кабинетов руководителей
Если переговоры проходят «за закрытыми дверями», необходимо проводить их в помещениях, отвечающих данным требованиям. Прежде всего – это комнаты переговоров и кабинеты руководителей. Существует ряд правил, позволяющих построить такие помещения грамотно. Конечно, мы не будем рассматривать здесь методики, позволяющие избежать прослушивания путем сканирования оконного стекла помещения для переговоров лазерным лучем из здания, стоящего напротив. Однако предпринять некоторые мероприятия, позволяющие значительно повысить звукоизоляцию ограждающих конструкций комнаты переговоров или кабинета, бывает весьма полезно.
Первое, самое важное, но как показывает практика, неочевидное правило – это обеспечение хорошей звукоизоляции входной двери в помещение. Лучшим средством для этого является устройство тамбура, т.е. последовательная установка двух дверей с воздушным промежутком между ними. Чем больше будет расстояние между дверьми, тем выше эффект. Помимо этого двери должны обязательно иметь порог и уплотнение по всему периметру притворов. Чем массивнее полотна дверей, тем лучше их звукоизоляция. Следует отметить, что стеклянные, пластиковые и полые двери для подобных помещений не подходят. То же относится и к откатным дверям (их практически невозможно качественно уплотнить). Внутри тамбура поверхности стен и внутренние поверхности дверей желательно обработать звукопоглощающими материалами (например стеновыми акустическими панелями «Ecophon»).
Для обеспечения хорошей звукоизоляции помещения для переговоров или кабинета руководителя следует исключить общее надпотолочное пространство с соседними помещениями, для чего перегородки в таких помещениях необходимо выполнять до потолочного перекрытия. Также важно проконтролировать системы вентиляции и кондиционирования. В некоторых случаях через воздуховоды слышимость может быть настолько высокой, что в соседнем помещении не потребуется даже напрягать слух.
Звукоизоляции стен, пола и потолка в случае необходимости может быть увеличена специальными материалами и конструкциями дополнительной звукоизоляции. Для увеличения звукоизоляции стен и потолка применяются панели дополнительной звукоизоляции ЗИПС (Россия). Звукоизоляция пола увеличивается путем устройства конструкции «плавающего» пола (см. «Технологии Строительства» № 4 2000).
Применение панелей ЗИПС обеспечивает до 13 дБ дополнительной звукоизоляции. Эту цифру можно арифметически сложить с собственной звукоизоляцией стены или перегородки. Допустим, исходная звукоизоляция стены была равна Rw = 45 дБ (реальная звукоизоляция легкой перегородки). Применяя панели ЗИПС, мы увеличиваем общую звукоизоляцию стены до величины Rw = 55 –58 дБ. Это показатель хорошей звукоизоляции. При громком разговоре с уровнем L = 80 дБА в соседнем помещении в дневное время трудно будет разобрать содержимое фраз (L = 55 дБА). Тогда как при исходной звукоизоляции стенки в соседнем помещении можно было, особенно не напрягая слух, слушать весь разговор.
В зависимости от конструкции «плавающего» пола возможно получить от 5 до 12 дБ дополнительной изоляции воздушного шума для межэтажного перекрытия. Поскольку собственная звукоизоляция перекрытий редко бывает ниже Rw = 50 дБ, суммарный эффект может превышать величину Rw = 60 дБ, что является очень хорошим показателем.
Для увеличения звукоизоляционного эффекта, внутренние поверхности комнаты переговоров также рекомендуется обрабатывать звукопоглощающими материалами. В таких помещениях подвешивается акустический потолок и монтируются звукопоглощающие стеновые панели.
Большое разнообразие моделей, цветов и материалов отделки лицевых поверхностей существующих звукопоглощающих материалов открывает широкие возможности для создания оригинальных офисных интерьеров при соблюдении необходимых акустических требований.
ДОМАШНИЙ КИНОТЕАТР — КАКИМ ОН ДОЛЖЕН БЫТЬ?
«Технологии строительства», №4 2002
В процессе организации и оснащения домашних кинотеатров, акцент традиционно делается на электротехнические характеристики акустической аппаратуры. Чем они выше, тем точнее воспроизводится запись и, следовательно, тем дороже оборудование кинотеатра. И все же, как показывает опыт, параметры звука зависят не только от возможностей технических средств…
Московская студия архитектуры и дизайна «АТТИКА» в сотрудничестве с Институтом акустики им. Андреева создала проект частного кинотеатра, не имеющего на сегодняшний день аналогов. Подвальное помещение в загородном доме было превращено в высокотехнологичный кино- и звукозал для просмотра кинокартин и прослушивания аудиозаписей. О том, какое значение заказчик уделял качеству звуковоспроизведения, говорит тот факт, что проект кинозала выделялся в самостоятельное направление, и бюро было поручено заниматься только этой работой. Проанализировав требования заказчика, проектировщики пришли к выводу, что, в данном случае речь должна идти о профессиональном озвучивании помещения. Выполнение такой задачи требовало соблюдения максимального количества довольно специфических условий и норм, с которыми в обычной проектной практике архитектор не сталкивается. Поэтому было принято решение обратиться за помощью к сотрудникам Института акустики им. Андреева. Рабочую группу возглавили ведущие российские специалисты в области электроакустики: кандидат технических наук А. Гайдаров (вице-президент московского отделения Всемирного Общества инженеров электроакустиков), кандидаты технических наук В. Белов и М. Ланне.
В идеальном случае при воспроизведении звукозаписи слушатель должен воспринимать только то, что записано в студии. Любые, не предусмотренные в процессе записи отражения акустической волны будут искажать звуковую картину. Следовательно, акустические свойства помещения, в котором размещается звуковоспроизводящая техника, оказывают самое непосредственное влияние на распространение и распределение звуковой волны. Поэтому все основные этапы проектирования были посвящены формированию акустической среды, которая находилась в тесной связи с функционально-эстетической организацией объема кинозала.
На первой стадии работ появился визуальный ряд, содержащий в себе основные предложения по отделке интерьера и его предметному насыщению. Выбранная авторским коллективом концепция следования стилистике 20-х годов ХХ в. возникла как ассоциативное обращение к эпохе расцвета кинематографа. Для работы над архитектурным проектом потребовалось провести серьезные исследования в области истории искусств и дизайна. В частности, в интерьер были введены витражи, созданные по мотивам произведений известного дизайнера и ювелира того времени Рене Лалика (Rene Lalique). На стекле методом химического травления выполнялись декоративные горельефные композиции, с характерной для этой техники обработки стекла тонкой моделировкой формы. Вместе с тем, проект предусматривал устройство потолка с глубокими кессонами и широкое применение в отделке помещения пробки и шпона из древесины ценных пород.
После того как с архитектурным предложением ознакомились инженеры из Института акустики, работы вступили в новую фазу. Необходимо было увязать дизайн интерьера с акустическим проектом. На основании результатов расчетов акустических параметров помещения специалисты по акустике определили критерии выбора отделочных материалов и обозначили их распределение в объеме кинозала. Таким образом, выявилась явная зависимость архитектурной части проекта от акустических характеристик будущего кинозала. В этой ситуации архитекторам предстояло средствами дизайна найти точное выражение основополагающих законов распределения звука в помещении. При этом основная задача, которую следовало решить творческому коллективу, состояла в том, чтобы свести к минимуму эффект звукоотражения. Поэтому в структуре отделки особое значение придавалось звукопоглощающим материалам. Для их подбора были составлены таблицы зависимости акустических характеристик материалов от физических свойств. Поскольку представители торгующих организаций не всегда могли предоставить архитекторам интересующую их информацию, проектировщикам зачастую приходилось заниматься сбором образцов материалов. Затем в Институте акустики под руководством кандидата технических наук В. Белова проводилось тестирование собранных образцов с целью определения их способности к звукопоглощению. Все замеры осуществлялись в специально оборудованной акустической камере. На основании выявленных акустических свойств отделочных материалов и с учетом пропорций помещения создавалась математическая модель распределения звуковых волн в объеме кинозала. Полученные таким образом данные использовались для определения электротехнических параметров звуковоспроизводящих устройств, и отрабатывались возможные варианты комплектации кинозала необходимой акустической аппаратурой.
По мере формирования перечня материалов, которые предстояло использовать в отделке кинозала, архитектурный проект постоянно корректировался и насыщался конкретными конструкторско-технологическими решениями. Исходя из рекомендаций инженеров-электроакустиков стены помещения должны быть покрыты панелями, состоящими из двух слоев пробкового конгломерата различной толщины, между которыми размещались алюминиевые листы. Кроме того, панели, обращенные к фронту акустической волны, предстояло пропитать фисташковым лаком. Пробковые панели необходимо жестко закрепить к стене и между ними, в местах стыков, организовать демпфирующие зазоры, заполненные рейками из мягкого пористого бальзового дерева, обладающего хорошим звукопоглощением. Бальзовые рейки, как и фронтальные акустические панели, следовало пропитать фисташковым лаком. Благодаря особому сочетанию пробкового конгломерата, бальзы, листового алюминия и фисташкового лака удалось достичь необходимых показателей отражения и поглощения звуковой волны.
Стяжку под напольное покрытие требовалось выполнить по особой технологии, когда в выравнивающий состав добавляются распушенная целлюлоза, волокна которой способствуют звукопоглощению. В качестве напольного покрытия был использован акустически пассивный ковер со специально подобранной жесткостью ворса.
Любопытно, что целый ряд архитектурных предложений по отделке помещения был сразу поддержан специалистами Института акустики, хотя для их реализации потребовалось внесение определенных уточнений в отношении толщины и сочетаемости различных материалов. В частности, это касалось пробкового покрытия стен и подвесного кессонированного потолка. Для потолочных конструкций была выбрана технология компании «КНАУФ ГИПС». Поскольку в данном случае речь шла о ячеистом потолке, несущая система монтировалась с шагом в два раза меньшим, чем это определено производителем. Зазор между плитой перекрытия и потолочными панелями заполнялся базальтовой ватой, которая запрессовывалась туда со значительным усилием. Во избежание образования резонирующих полостей все коммуникационные полости в стенах вскрывались и также заполнялись минеральной ватой.
Входные двери — двухкамерный стеклопакет в алюминиевом профиле, поверх которого наклеивались демпфирующие фальш-филенки из бальзы. Так как бальза не отличается декоративными свойствами, окончательная отделка дверей производилась шпоном из древесины тропической породы с последующей пропиткой натуральным растительным маслом.
В интерьере много стекла, которое в соответствии с архитектурным замыслом задает основную тему декоративного решения. Однако по требованию акустиков все стеклянные элементы (полочки, остекление шкафов и т.д.) были жестко зафиксированы (вклеены) или установлены с демпфирующей прокладкой из пористой резины. Задники шкафов и стеллажей оклеены пробковым листом и окрашены серебристой краской. Выполняя функцию демпфера, задники одновременно являются фоном для DVD-дисков и видеокассет, а также для экспозиции коллекции старинной кино- и фотоаппаратуры.
Проекционный экран, закрывающийся шторами, смонтирован в объемной раме коробчатой конструкции и несколько утоплен по отношению к ее фронтальной плоскости. В нижней части короба размещен сабвуфер. Коробчатая рама изготовлена из листов гипсокартона, ее основание заполнено песком, а верхняя часть — минеральной ватой «Шуманет». Поверхность короба зашпаклевана выравнивающим составом с добавлением распушенной целлюлозы, зашлифована и окрашена латексной краской.
Особое внимание было уделено созданию комфортных условий пребывания в помещении. В систему светотехнического оборудования был введен диммер — устройство плавной регулировки уровня освещенности. В то же время, при отключении общего света в комнате остается местная подсветка. Она осуществляется благодаря встроенным в мебель точечным светильникам, свет которых рассеивается при помощи полок из матового стекла. Мягкое освещение снимает утомляемость глаз во время демонстрации фильма и позволяет ориентироваться в пространстве зала. Кроме того, в зале предусмотрен пол с подогревом до 18-20°С. Такая температура не снижает тонус сосудов и не приводит к варикозному расширению вен.
Длительное нахождение в кинотеатре при закрытых дверях потребовало оснащения помещения микроклиматическим оборудованием: вентиляцией, кондиционером, а также системами охлаждения и поддержания влажности. В связи с этим пришлось соблюсти еще одно важное условие — все агрегаты должны работать бесшумно. Для того чтобы исключить малейший фоновый звук, архитекторы применили разнесенные воздухозаборники с вентиляционными решетками лабиринтного типа — всего боле 50 решеток, расположенных на пересечении кессонов.
В результате детальной проработки функциональной среды кинозала возникла многоступенчатая структура, включающая в себя различные сетевые блоки, одни из которых должны действовать синхронно, другие — последовательно или независимо друг от друга. Для обеспечения четкой и слаженной работы всей исполнительной автоматики инженеры-схемотехники создали систему управления и контроля, в конфигурацию которой введен центральный процессорный модуль. Поскольку зал насыщен дорогостоящей энергозависимой аппаратурой, чутко реагирующей на скачки напряжения в сети, система электропитания имеет стабилизирующее устройство. Во избежание нежелательных последствий аварийного сбоя в энергоснабжении предусмотрен источник бесперебойного питания, который в течение 30 мин. в автономном режиме будет осуществлять подачу электроэнергии. Как показывает опыт, этого времени вполне достаточно для отключения от сети всего электрооборудования.
Благодаря совместным усилиям архитекторов, специалистов по электроакустике и представителей других инженерных специальностей, удалось реализовать новейшую комплексную программу по организации домашнего кинотеатра. В состав данного проекта вошли архитектурная часть, сложнейший инженерный и акустический проекты, содержащие в себе специально разработанные технологии, направленные на достижение максимального качества воспроизведения звука и изображения. Эта работа задает принципиально новый уровень в решении подобных задач и выделяет этот вид проектных услуг в отдельное направление архитектурной, научной и инженерной деятельности.
Александр Вайсфельд
ПОВЫШЕНИЕ ЗВУКОИЗОЛЯЦИОННЫХ ХАРАКТЕРИСТИК ПЕРЕГОРОДОК
«Технологии строительства», №4 2002
Основные типы звукоизоляционных перегородок
С конструктивной точки зрения перегородки можно разделить на два класса: однослойные и многослойные.
Однослойные конструкции подразумевают использование какого-либо плотного строительного материала на жестком связующем (растворе). Это могут быть кирпичные, гипсолитовые, керамзитобетонные и даже железобетонные перегородки, где бетон играет роль и конструктивного материала, и связующего. Несмотря на то, что в одной перегородке возможна комбинация нескольких материалов, определяющим будет наличие только плотных материалов при условии жестких связей между всеми элементами конструкции (например, стена из пемзобетонных блоков на цементно-песчаном растворе, облицованная кирпичом).
Звукоизоляционные характеристики подобных конструкций определяются, прежде всего, их массой и улучшаются примерно на 6 дБ при двукратном увеличении массы стены. Пористость материала перегородки также играет роль в обеспечении ее звукоизоляционных качеств. Однако, как показывает практика, выигрыша за счет повышения пористости материала получить практически не удается из-за более существенных потерь звукоизоляции при соответственно уменьшающейся при этом поверхностной плотности такого материала.
Многослойные перегородки, как следует из названия, состоят из нескольких (минимум двух) чередующихся слоев жестких (плотных) и мягких (легких) строительных материалов. Плотные материалы (гипсокартон, кирпич, металл) проявляют здесь звукоизоляционные свойства и работают аналогично однослойным перегородкам: звукоизоляция тем выше, чем больше поверхностная плотность материала. Материалы легкого слоя выполняют звукопоглощающую функцию, т.е. структура материала должна быть такой, чтобы при прохождении сквозь нее звуковых колебаний последние ослаблялись за счет трения воздуха в порах материала. Следует отметить низкую эффективность применения в звукоизоляционных перегородках таких материалов, как пенопласт, пенополиуретан или пробка. Это связано с тем, что для хороших звукоизоляционных материалов они имеют недостаточную плотность, а для причисления их к классу звукопоглощающих материалов — слишком низкое поглощение из-за отсутствия возможности продувания воздухом.
Звукоизолирующая способность трехслойных вариантов многослойных перегородок (наиболее распространенный пример — каркасно-обшивная гипсокартонная перегородка) зависит от большего числа факторов, чем звукоизоляция однослойной перегородки. Увеличение плотности материала жестких слоев, увеличение расстояния между крайними слоями (т.е. увеличение общей толщины перегородки) и заполнение внутреннего пространства слоями специального звукопоглотителя (именно поглотителя, а не утеплителя) — вот основные пути достижения необходимой звукоизоляции.
Для реализации всего потенциала многослойных конструкций должно выполняться требование послойного прохождения звука через толщу перегородки. Проще говоря, в идеале звуковая волна должна последовательно пройти сначала только через первый жесткий слой, затем только через мягкий, затем только через второй жесткий слой и т.д. На практике же обязательное присутствие несущего каркаса приводит к тому, что звуковые колебания первого жесткого слоя передаются через общий каркас (или общий фундамент) на последний жесткий слой и переизлучаются им в защищаемое помещение. Таким образом, звуковая энергия по жестким элементам каркаса успешно минует специально заготовленные внутренние звукопоглощающие слои-ловушки, в результате чего реальная звукоизоляция многослойных конструкций оказывается значительно ниже расчетных значений.
В процессе рассмотрения звукоизолирующей способности данных типов перегородок неизбежно возникает вопрос: какой тип перегородок имеет лучшую звукоизоляцию при наименьшей толщине, массе и стоимости? Традиционный ответ звучит так: многослойные каркасные перегородки в качестве внутренних ограждающих конструкций предпочтительнее. При значительно меньшей массе (что очень важно для снижения нагрузок на перекрытия и фундамент) и толщине они имеют практически одинаковый (а иногда и больший) индекс изоляции воздушного шума (Rw), чем однослойные конструкции.
Однако, здесь важно понимание сущности индекса изоляции воздушного шума. Rw — это некая усредненная величина, с помощью которой можно быстро и достаточно объективно сравнивать звукоизоляционные характеристики строительных конструкций в отношении изоляции так называемых «бытовых шумов», то есть таких шумов, как звуки голоса, работающего телевизора, дребезга посуды, звонка телефона или будильника.
В отношении музыкальных центров с системами «Mega Bass», домашних кинотеатров, оснащенных мощными сабвуферами, и высококачественных систем прослушивания музыки, выбор конструкции перегородки, основанный только на значении индекса Rw, представляется не вполне корректным. Как, впрочем, и вся система нормирования звукоизоляции строительных конструкций, регламентирующая параметры их изоляции в частотном диапазоне от 100 Гц и выше. А ведь на сегодняшний день практически у любой качественной системы звуковоспроизведения частотный диапазон начинается с 20-40 Гц.
На рис.1 показаны графики звукоизоляции однослойной (неоштукатуренная стена в полкирпича) и многослойной (перегородка из ГКЛ) конструкций. По значениям индексов изоляции воздушного шума Rw гипсокартонная перегородка (Rw = 48 дБ) превосходит кирпичную стенку (Rw = 45 дБ) на 3 дБ. При этом толщины двух конструкций практически равны: толщина кирпичной стены без штукатурки — 120 мм, а толщина гипсокартонной перегородки — 125 мм. Однако, как видно из графиков, на частотах до 200 Гц звукоизоляция кирпичной стены превосходит звукоизоляцию гипсокартонной перегородки. И, в общем, данная закономерность справедлива практически для всех однослойных и многослойных конструкций одинаковой толщины. Вместе с тем уже в области средних частот звукоизоляция многослойных конструкций может существенно превышать изоляцию однослойных перегородок (именно за счет этого и происходит рост индекса Rw).
Поэтому при выборе конструкции внутренних перегородок необходимо четко представлять, для изоляции каких типов шумов и от каких источников данные перегородки предназначены.
Звукоизоляционные характеристики перегородок
Несмотря на некоторые недостатки индекса изоляции воздушного шума Rw, он, безусловно, является очень удобным параметром для быстрого сравнения звукоизоляции различных конструкций перегородок между собой и с нормативными величинами звукоизоляции ограждающих конструкций.
На территории Российской Федерации по-прежнему действует СНиП II-12-77 «Защита от шума», а в Москве с 1997 года действуют дополняющие и уточняющие МГСН 2.04 — 97 «Допустимые уровни шума, вибрации и требования к звукоизоляции в жилых и общественных зданиях». Несмотря на то, что в МГСН введено деление зданий по категориям комфортности (А, Б и В), в отношении требований к звукоизоляции стен и перегородок значительных изменений не произошло. Например, требование нормативной изоляции воздушного шума межкомнатными перегородками вне зависимости от класса жилья осталось на уровне Rw = 43 дБ, как и 25 лет назад, а требование к индексу изоляции воздушного шума межквартирной стены ужесточилось всего на 2 дБ, и только по отношению к зданиям категории А (высококомфортные условия). То есть индекс изоляции воздушного шума межквартирной стены в таком здании должен быть не менее Rw = 54 дБ, против Rw = 52 дБ обязательных ранее для жилых зданий всех типов. А ведь шумовой фон в квартирах (не считая мощных источников, типа кинотеатров или Hi-End) за прошедшие десятилетия, по крайней мере, у нас в стране значительно вырос. В настоящее время практически в каждом доме и в каждой комнате имеется телевизор, телефон, магнитола, а в кухне и ванной комнате работают стиральная или посудомоечная машины, вытяжка и кондиционер. Домашний компьютер также вносит свой вклад в увеличение общего шумового фона.
Имеющийся опыт позволяет утверждать, что для современных условий индекс изоляции воздушного шума межкомнатной перегородки должен быть не менее Rw = 52 дБ, а межквартирной стены — не менее Rw = 62 дБ. Только при таких нормативных значениях ограждающих конструкций можно говорить об акустическом комфорте. Однако даже стена с Rw = 62 дБ полностью не решит проблему звукоизоляции спальни, если сосед решил посмотреть в своем кинотеатре новый боевик. Практика показывает, что средний уровень звука при просмотре фильма в домашнем кинотеатре составляет LА = 90 дБА. Таким образом, в помещении спальни уровень шума окажется в районе LА = 30 дБА. И хотя это примерно соответствует предельному значению ночных норм по уровню шума в жилых помещениях (LАпред = 30 дБА), чтобы действительно можно было говорить о чуть слышном или о вообще неслышном звуке уровень шума в комнате должен быть не выше LА = 20 дБА.
Интересно, что шум, проникающий с улицы (прежде всего от автотранспорта), и существенно (более чем на 6 дБА) превышающий шум от соседей, вызывает гораздо меньшее раздражение, чем более слабые звуки: музыка, крики, смех и т.п. Это обусловлено психофизиологическими особенностями человеческого слуха, и в борьбе за акустический комфорт жилища с этим также приходится считаться.
Какие конструкции внутренних перегородок с индексом изоляции воздушного шума не менее 50 дБ можно предложить? Прежде всего, это легкие каркасные перегородки с обшивкой из гипсокартонных (ГКЛ) или гипсоволокнистых (ГВЛ) листов. С точки зрения звукоизоляции применение листов ГВЛ предпочтительнее. Во-первых, они имеют более высокую (почти в полтора раза) поверхностную плотность. Во-вторых — из-за технологии производства данный материал имеет более высокие внутренние потери, т.е. является менее звонким. Однако из-за более сложной технологии финишной отделки подавляющее большинство строителей, к сожалению, отдает предпочтение использованию ГКЛ.
Для получения высокой звукоизоляции необходимо использовать два независимых каркаса, на каждый из которых монтируются внешние слои обшивки. Помимо этого, элементы каркаса, связанные с боковыми стенами и перекрытиями, должны быть изолированы упругими прокладками, чтобы исключить косвенную передачу звука.
Общий звукоизоляционный эффект также зависит и от выбора материала среднего слоя. Главный критерий выбора такого материала — величина его безразмерного коэффициента NRC (NRC — усредненный по частотам коэффициент звукопоглощения), значения которого могут колебаться от 0 до 1. Чем ближе значение NRC к единице, тем выше звукопоглощающая способность материала. Для получения максимального эффекта рекомендуется выбирать материалы с NRC не менее 0,8. Так, например, специальный звукопоглощающий материал — минеральная плита «Шуманет-БМ» имеет значение NRC = 0,9. Толщина поглощающего слоя должна составлять не менее 50% внутреннего пространства перегородки и быть не тоньше 100 мм (естественно, что при толщине каркаса 50-75 мм можно применить только один слой звукопоглотителя толщиной 50 мм).
Индекс изоляции воздушного шума каркасно-обшивной перегородки из двух листов ГВЛ 12 мм на каждом из двух независимых каркасах толщиной по 50 мм с воздушным промежутком между каркасами 10 мм составляет около Rw = 53 дБ. При этом внутреннее пространство заполняется звукопоглощающей ватой толщиной 100 мм и общая толщина конструкции равна 160 мм.
Кирпичные перегородки из полнотелого красного кирпича, оштукатуренные с двух сторон, имеют следующие значения индекса звукоизоляции:
стена в полкирпича (толщина со штукатуркой 150 мм) — Rw = 47 дБ;
стена в один кирпич (толщина со штукатуркой 280 мм) — Rw = 54 дБ;
стена в два кирпича (толщина со штукатуркой 530 мм) — Rw = 60 дБ.
Таким образом, для изоляции «бытовых» шумов более предпочтительным является использование легкой перегородки из ГВЛ толщиной 160 мм, имеющей уровень звукоизоляции, сопоставимый по величине с аналогичным параметром более массивной стены толщиной в один кирпич (280 мм).
Причины снижения звукоизоляционных характеристик перегородок
Наверное, нет ни одной статьи, посвященной проблеме звукоизоляции легких перегородок, где бы ни говорилось о важности установки упругих прокладок в местах примыкания направляющих профилей каркаса к стенам и перекрытиям. Однако на практике крайне редко встречаются строители, которые бы добросовестно выполняли подобные мероприятия. Как правило, необходимость установки таких прокладок осознается уже после монтажа и обработки всех поверхностей, когда изменить что-либо не представляется возможным.
Помимо ухудшения звукоизоляции перегородок, отсутствие упругих прокладок по контуру закрепления приводит к повышенной передаче косвенных шумов из других помещений и этажей. Даже если к звукоизоляции в отношении соседнего помещения претензии отсутствуют, такая перегородка может преподнести неприятный сюрприз, переизлучая шумы, например, от соседей сверху или снизу.
Здесь также уместно упомянуть о передаче косвенных шумов однослойными конструкциями. Безусловным лидером среди перегородок с плохой звукоизоляцией является стена из гипсолитовых блоков со стандартной толщиной 80 мм. Мало того, что ее индекс изоляции воздушного шума не превышает Rw = 40 дБ, что недостаточно даже по действующим нормам (Rwнорм = 43 дБ); но, кроме всего прочего, конструкция, выполненная из этого материала, является отличным проводником и излучателем структурных шумов. В качестве примера можно привести ситуацию, когда в одной из комнат квартиры, со стороны стены, выполненной из гипсолитовых блоков, был слышен звук соседского рояля. Создавалось полное впечатление, что музыкант живет в квартире, расположенной рядом. Каково же было удивление присутствующих, когда выяснилось, что рояль находится у соседей снизу!
Невысоко оцениваются звукоизоляционные свойства семищелевого и многопустотного красного кирпича. Это тот самый случай, когда внутренние пустоты вносят в повышение звукоизоляции гораздо более скромный вклад, чем снижение звукоизоляции за счет уменьшения поверхностной плотности такой стены. Ко всему прочему перегородки из семищелевого кирпича прекрасно проводят и излучают звук. Для уменьшения передачи и излучения структурного шума стеной из этого материала можно рекомендовать засыпку внутренних полостей кирпичей песком.
Необходимость заполнения внутреннего пространства звукопоглотителем при монтаже легких перегородок и облицовок из ГКЛ для некоторой части строителей, к сожалению, не является очевидным фактом. Так как для внутренних перегородок проблема теплоизоляции, как правило, не возникает, очень часто единственным «звукопоглотителем» внутри перегородки оказывается воздух. В этом случае возможно существенное снижение звукоизоляции конструкции (на собственных резонансных частотах), когда перегородка становится подобной барабану. Поэтому заполнение внутреннего пространства звукопоглощающим материалом крайне важно, причем это должен быть материал с как можно более высоким коэффициентом звукопоглощения (желательно не менее NRC = 0,8).
Одной из типичных причин снижения звукоизоляции перегородок всех видов являются банальные щели и отверстия в конструкциях. Наличия небольшой сквозной трещины в углу межквартирной стены вполне достаточно, чтобы не напрягая слух, слышать разговор соседей. Для того чтобы перестать различать слова, необходимо лишь хорошо заделать такую щель раствором.
При этом хотелось бы развеять миф о хороших звукоизоляционных свойствах монтажной пены. Благодаря удобству ее применения возникает искушение «запенить» ненужное отверстие или образовавшуюся щель. Однако звукоизоляционные свойства монтажной пены очень слабые, несмотря на ее пористость (а скорее благодаря последней). Поэтому заделанные таким образом отверстие или щель продолжают вполне успешно излучать звук, пусть и с небольшими потерями. Для устранения щелей и отверстий рекомендуется использовать акриловые или силиконовые герметики, тем более что последние обладают хорошей эластичностью — важной особенностью материала для заделки всякого рода трещин.
Следует иметь в виду, что два слоя обшивочного материала обеспечивают большую герметичность каркасно-обшивной перегородки, чем один слой удвоенной толщины. При этом листы ГВЛ или ГКЛ монтируются так, чтобы швы первого и второго слоев не совпадали (внахлест).
Увеличение звукоизоляции существующих перегородок
В случае недостаточной звукоизоляции каркасно-обшивной перегородки из ГКЛ, прежде всего, необходимо рассмотреть вышеперечисленные «типовые» причины и устранить их. Если это сделать по каким-либо причинам невозможно, единственно верным решением является установка дополнительной каркасной облицовки или применение готовых панелей дополнительной звукоизоляции ЗИПС.
Для того чтобы увеличить звукоизоляцию легкой перегородки на DRw = 10 дБ, необходимо параллельно ей установить дополнительную каркасную перегородку. Гипсоволокнистые листы толщиной 12 мм монтируются в два слоя со стороны защищаемого помещения на каркасе из П-образных металлических профилей шириной 100 мм. Внутреннее пространство заполняется двумя слоями звукопоглощающей ваты «Шуманет-БМ» толщиной 50 мм каждый. При этом направляющий профиль монтируется только к полу, потолку и боковым стенам через упругую прокладку «Вибросил» с отступом от существующей стены около 10 мм, чтобы избежать соприкосновения с ней элементов каркаса (стоечных профилей). Общая толщина дополнительной звукоизоляционной конструкции составляет около 135 мм.
Те же DRw = 10 дБ могут быть получены путем монтажа на защищаемую стену панелей дополнительной звукоизоляции ЗИПС-7-4 толщиной 70 мм. Панель ЗИПС — это готовая к применению сэндвич-панель (многослойная конструкция), где чередуются звукоизоляционные (листы ГВЛ) и звукопоглощающие (сверхтонкое стекловолокно) слои. Толщина звукоизолирующей панели и количество слоев может изменяться в зависимости от требований конкретной акустической задачи (от 40 до 130 мм). Единственным условием применимости панелей ЗИПС в данном случае является достаточная несущая способность исходной перегородки.
Одним из главных достоинств панелей ЗИПС является исключение путей косвенной передачи звука на панель, и тем самым, увеличение ее дополнительной звукоизоляции. Крайне редко возникают ситуации, когда только одна общая для двух помещений стена излучает шум. Как правило, вместе с ней шум также переизлучают все боковые стены, перекрытия пола и потолка. Конечно, интенсивность звука на них может быть несколько меньше, однако именно к ним монтируются (пусть даже и через упругую прокладку) направляющие профили дополнительной каркасной перегородки из ГВЛ. Панели ЗИПС не имеют жестких связей по контуру, поэтому они эффективны не только в отношении шума, проходящего через стену, на которой они закреплены, но и шума, передающегося от боковых стен и перекрытий.
В случае необходимости увеличения звукоизоляции однослойной перегородки (кирпичной стены и т.п.), панели ЗИПС также являются одним из самых эффективных средств дополнительной изоляции. Комбинация массивной однослойной стены и легкой многослойной облицовки также позволяет решить проблему звукоизоляции от источников звука с мощными низкочастотными составляющими. В этом случае кирпичная стена определяет уровень звукоизоляции на низких частотах, где решающее значение имеет только масса преграды, а на средних и высоких частотах в дело вступает панель дополнительной изоляции ЗИПС.
Все вышесказанное справедливо и в отношении дополнительной каркасной облицовки, но ее эффективность при прочих равных условиях оказывается существенно ниже из-за перечисленных недостатков.
Александр Боганик