Как в условиях домашних реалий выжать из АС максимум? (Часть 1)

By | 08.08.2018

Вступительное слово

Начну с безапелляционного заявления: после прочтения, и, самое главное, усвоения серии обзоров на вышеозначенную тему Вы, уважаемый читатель, вполне сможете считать себя экспертом в области комнатной акустики

Может быть, это и преувеличение, но в одном можно не сомневаться – большинство людей, занятых в сфере аудиобизнеса или областях к нему примыкающих, не знают и третьей части того, о чем Вам предстоит прочесть. В стремлении получить «хороший» звук большинство их них полагается на чисто субъективный метод проб и ошибок или, того хуже, на случай или знаменитый «авось». Иногда им это удается, но чаще – нет, поскольку серьезные так дела не делаются.

С учетом того, что комната для прослушивания (в дальнейшем КдП) представляет собой конечный и едва ли не самый главный аудиокомпонент в системе, причем такой, над которым производители аудиоаппаратуры попросту не властны, любое улучшение его будет огромным подспорьем не только для производителей акустических систем (в дальнейшем АС), но и для потребителей. Те, кто знает, как добиться от АС достойного звучания в комнате вне зависимости от обстоятельств, обладает огромным преимуществом перед олухами. Такие люди могут и себе, и кому угодно дать нечто реально осязаемое – замечательный звук.

Конечно, сами по себе эти обзоры (а их будет в общей сложности 3) не сделают никого экспертом, но зато они содержат в себе всю необходимую информацию и методику, которые при определенной практике вполне могут превратить человека просто заинтересованного и не ленивого в настоящего эксперта. Это ХОРОШЕЕ начало. Наиболее детальный анализ (для гурманов) взаимодействия АС и КдП будет опубликован в самой последнем (третьем) обзоре на эту тему, который пока находится в стадии приготовления. Называться он будет «Совместная жизнь АС и помещений».

Часть 1: Почему АС звучат так, а не иначе

В дни, когда наличие головок громкоговорителя (в дальнейшем ГГ) высокочастотных (в дальнейшем просто пищалок) в АС было диковинкой, наречие «больше» однозначно ассоциировалось с «лучше», и даже АС с огромными басовиками (головка ГГ низкочастотная) требовали огромного усиления, чтобы расслушать хоть что-нибудь, отдаленно напоминающее бас, производители таковых буквально ежедневно бросались из одной веры в другую. Басовики, среднечастотники (головка ГГ среднечастотная) и пищалки продавались сепаратно, из которых другие умельцы комплектовали потом всякую разносортицу из различных брэндов, используя при этом разделительные фильтры (в дальнейшем для простоты кроссоверы), которые разрабатывались для совершенно других вещей. Потом все это запихивалось в самопальное акустическое оформление (в дальнейшем корпус или АО), образец которого брался в соответствующем разделе одного из ежемесячных журналов, посвященных аудио или электронике. Вниманию рукодельцев предлагались даже такие «гениальные» конструкции, посредством манипуляций с дверцами и подвижными панелями которых можно было превратить АС закрытого типа, во что бы Вы думали? В рупор! Одним словом, то были деньки, когда качество звучания повышалось в прямой зависимости от количества усилий, затраченных на выпиливание и ошкуривание корпуса.

Можно часто услышать, что, дескать, эх, то были «старые добрые времена» аудио… Ни фига подобного. То были просто «старые времена», по прошествии которых люди, наконец, научились «разрабатывать» АС. В те дни (50-е, 60-е и даже 70-е) все АС звучали по-разному, причем практически ни одна из них не звучала по-настоящему хорошо. Наверное, в то время все были всё еще слишком ошарашены «чудом» под названием «хай-фай», самой возможностью записывать и воспроизводить нечто, напоминающее музыку. Если попытаться охарактеризовать те времена одним словом, я бы сказал «разношерстные», поскольку звучание тех или иных АС той поры было продуманным настолько же, насколько случайным.

Много воды утекло с тех пор, но утекала она очень медленно. От инстинктивных разработок по методу проб и ошибок люди пришли к возможности моделировать поведение ГГ (или динамиков, если хотите) на компьютере, прежде чем конструировать промышленный прототип. Сегодня у нас есть возможность глубоко исследовать различные материалы, формы, размеры и «ходовые качества» для целей оптимизации АЧХ, чувствительности и всего такого прочего, на основании чего и создается прототип. После материализации прототипа проводятся детальные акустические измерения, на основании которых выносится суждение о том, как такая АС будет звучать еще до того, как в нее поступит реальный звуковой сигнал. Если выясняется, что «окраска» обещает быть слишком сильной, то проводятся дальнейшие измерения с помощью сканирующего лазерного виброметра (есть такая фигняция), которые показывают, что конкретно служит причиной тембрального окрашивания. Так переходят к следующей итерации.

После того, как АС укомплектована «подходящими» басовиками, среднечастотниками и пищалками можно переходить к интеграции их в подобающее АО, используя дальнейшие компьютерные средства для разработки кроссоверов, которые производятся на заказ СПЕЦИАЛЬНО для данных конкретных головок, засунутых в данное конкретное оформление. После этого шага проводятся дальнейшие акустические измерения, по результатам которых судится, насколько же далека или близка конечная цель. Разумеется, если эта цель есть. А она должна быть, поскольку цель – это главное, что отличает сегодняшние АС от АС «разношерстной» поры.

Когда все, наконец, готово, можно переходить к прослушиванию. А что, собственно, слушать- то? Разумеется, окраску. Наличие окраски в звучании АС означает, что ко всем звукам, воспроизводящимся через них, АС добавляют «отсебятину». Окраска должна присутствовать в музыке, в голосах, в инструментах, в виртуозности, с которой на них играют, но не в АС! Одна окраска может быть более неприятной, чем другая. Третья на некоторых записях может быть даже приятной. Однако, если Вы планируете слушать самый разнообразный музыкальный материал, то крайне маловероятно, что та или иная окраска, присущая АС, будет приятна везде – скорее наоборот.

На самом деле сурово контролируемые слепые тесты на прослушивание показывают (а точнее доказывают), что ПОДАВЛЯЮЩЕЕ большинство слушателей предпочитает АС, у которых окраска минимальна. Среди реакций слушателей на различные АС встречаются такие описательные характеристики звучания, как бубнение, звон, гудение, гнусавость, расплывчатость, жирность, резонансность, пронзительность, ящичность и т.д., а также и более поэтические навроде «шоколадного баса». Возможно, это многим покажется странным, но наивысшее предпочтение отдавалось АС с самым коротким списком подобных характеристик, т.е. наиболее нейтральным и прозрачным. Так как же этого добиться?

Прежде чем углубиться в пучины нюансов построения АС, неплохо бы отойти от них на необходимое для нормального прослушивания расстояние и постараться понять, что мы слышим? Мы слушаем музыку в помещениях, имеющих стены, пол и потолок, которые почти всегда являются достаточно хорошо отражающими поверхностями. АС излучают звук во всех направлениях и все эти звуки, многократно отразившись от различных поверхностей, в конце концов, достигают наших ушей. Давайте посмотрим, что происходит в типичной комнате. Для примера возьмем АС, в отношении которых большинство слушателей сошлось во мнении, что им присущи некие проблемы с правильностью передачи тембра.

В частности измерения направленности АС (Рис. 1) показали, что основной директивой при создании данных АС явно было достижение прекрасных показателей на главной оси (т.е. оси перпендикулярной плоскости, в которой расположены динамики) – тут, надо сказать, разработчики преуспели и сделали АЧХ плавной и очень ровной – при полном игнорировании внеосевого поведения.

Рис. 1 Семейство АЧХ АС, измеренных в безэховой камере, которые демонстрируют (сверху вниз) очень гладкое и плоское «поведение» АС на оси, которое все больше и больше ухудшается по мере удаления в сторону от главной оси

Рис. 2 Последовательность звуков, приходящих к месту прослушивания в комнате. Первым приходит прямой звук, представленный осевой АЧХ (толстая линия в районе 0 дБ). Вторыми приходят ранние отражения от пола, потолка и стен. Они представлены суммой энергий, измеренных в безэховой камере на соответствующих углах в сторону от главной оси, с поправкой на потери на распространение (пунктирная линия). Последнее собрание звуков преставляет собой множественные отражения от границ комнаты и мебели. Они представлены измерением полной звуковой мощности, излученной АС, с поправкой на частотно-зависимое поглощение в комнате (точечная линия). Толстая кривая, начерченная над этими тремя представляет собой их сумму — прогноз того, что может быть измерено в реальной комнате.

Измерения АЧХ АС в безэховой камере (Рис. 2) дают хорошее представление о том, как и какие звуки достигают ушей слушателя в типичной КдП. Эти звуки можно разделить на 3 категории: прямые, ранние отражения и все остальные отзвуки. В данном примере все плоскости (т.е. границы) комнаты рассматривались как хорошо отражающие. Так вот измерения показывают, что в области низких частот (в дальнейшем НЧ) доминирующим фактором является отраженный звук (или звуковая мощность). Прямой (аксиальный) звук особой роли НЕ играет. На другом конце спектра, в области высоких частот (в дальнейшем ВЧ), в том, что мы слышим, ПОЛНОСТЬЮ доминирует прямой (аксиальный) звук. В средней части спектра, т.е. в самом важном диапазоне, отвечающем за передачу наиболее важной части голосовой и инструментальной информации – от нескольких сотен Герц до нескольких тысяч Килогерц – важно все! Все три составляющие одинаково влиятельны. Таким образом, если пытаться охарактеризовать звучание АС в комнате, используя при этом измерения АЧХ, полученные в безэховой камере, становится ясно, что измерять в этом случае надо абсолютно все. Сведение описания АЧХ к одной единственной кривой – чересчур упрощенческий подход. Аксиальная АЧХ, также как и полная звуковая мощность, – это лишь верхушка айсберга.

Хорошо, скажете Вы, все это, конечно, интересно, но все это – теория. Что же происходит в комнате на самом деле? Из Рис. 3 становится понятно, что реалии гораздо сложнее. В области НЧ комнатные резонансы и отражения от смежных плоскостей доминируют в передаче басовых звуков от АС к слушателю, а различные места установки АС дают очень сильно различающиеся ощущения баса – от конкретного рокенрольного «панча» (дын-дын-дын…) до весьма неплохого собранно- умеренного, проходя, разумеется, через вялый и недостаточный. Не только перемещение АС, но также и слушателя, может дать все те же самые эффекты. Одним словом, вывод должен быть ясен – на НЧ местоположение АС это ВСЁ. Даже при «идеальных» басовиках качество слышимого баса определяется комнатой, местоположением АС и слушателей в ней.

На СЧ и ВЧ ситуация радикально иная. Расположение АС и слушателей не играет практически НИКАКОЙ роли, а конечный результат хорошо предсказуем с помощью данных, полученных в безэховой камере. Что ж, уже неплохо.

Подводя промежуточные итоги, можно с уверенность сказать, что в КдП есть две четко различимые зоны: до 400-500Гц в том, что мы слышим, доминирует комната, после – АС. В случае данных конкретных АС из примера выше жалобы слушателей на окраску СЧ вполне объяснимы – такова изначальная конструкция этих АС. Фокусировка на аксиальных характеристиках и невнимание ко всем остальным направлениям вошли в противоречие с тем фактом, что слышимое нами в комнате ОЧЕНЬ сильно зависит от звуков, излучаемых АС и в других направлениях (кроме прямого).

Стоит отметить, что коррекция АЧХ при помощи эквалайзера (в дальнейшем просто эквализация) эту проблему НЕ решает. Изменение формы «комнатной» кривой разрушило бы то единственное хорошее, что у этих АС есть – прекрасную осевую АЧХ. Можно заставить АС звучать по-другому, может быть где-то даже в лучшую сторону, но сравнять их звучание со звучанием АС, сконструированных грамотно во всех отношениях НЕВОЗМОЖНО. Чтобы избежать появления окраски при взаимодействии с КдП АС должны хорошо вести себя не только на главной оси, но и на остальных (и на 30°, и на 60° от главной) тоже. Если АС сконструированы так, что их направленность как функция частоты относительно постоянна, то в этом случае точный тембральный почерк всех трех категорий звучания (прямой звук, ранние отражения и все остальные отзвуки) становится реальностью. Вот откуда берется хороший звук.

Рис. 3 Измерения, проведенные на опытной АС в комнате. АС помещалась в трех реалистичных точках, отвечавших левому/правому каналу. Для каждого такого положения измерения проводились в четырех возможных местах прослушивания, находившихся в окружности радиусом 60 см. Каждая из нижних кривых представляет собой усреднение по энергии каждой серии из 4 измерений. Верхняя кривая — это предсказанная комнатная кривая из Рис. 2, которая из соображений наглядности смещена на 10 дБ вверх.

Теперь, когда общая картина с АС и их взаимодействием с КдП несколько прояснилась, давайте познакомимся с главным предметом, т.е. самими АС поближе. В АС используются ГГ. ГГ — это не просто забавное словечко, обозначающее динамик АС, скажем, тот же басовик. Этим словом описывается устройство, которое преобразует энергию из одной формы в другую. В данном случае – из электрической в акустическую. Электрический сигнал (утрированно) представляет собой (или должен представлять) набор звуковых колебаний, созданный исполнителями и записанный инженерами звукозаписи, которые вместе создают «Искусство». Задачей ГГ является воссоздание точного акустического аналога этих колебаний и сохранение, таким образом, Искусства в неприкосновенности.

Однако одному ГГ (в дальнейшем ГГ) такая задача не под силу. По двум причинам. Во-первых, понятие «музыка» простирается от мощных НЧ до субтильных ВЧ. Хотеть от одного и того же ГГ, прекрасно воспроизводящего шибающий в грудную клетку удар барабанной бочки или взрыв бомбы в кино, еще и воспроизведения утонченности обертонов скрипки – слишком жирно! Вот поэтому-то у нас есть не только басовики, но еще и пищалки и даже среднечастотники. Большие диафрагмы приводят в движение большие массы воздуха, от которых содрогаемся и мы и наш дом. Хотя заставить большие диафрагмы дергаться с большой частотой физически и возможно, лучше этого не делать. Опять же по двум причинам.

Во-первых, из исследований поведения АС в комнатах становится ясно, что стремление к постоянству направленности на как можно более широком частотном диапазоне – отличная идея. По мере увеличения частоты звука он становится «физически меньше» – длина волны уменьшается. Поэтому для поддержания однородной дисперсии звука с ростом частоты необходимо постепенно уменьшать размеры излучающей диафрагмы. Сколько ГГ различного размера использовать в той или иной АС отчасти определяется требованием к постоянству направленности. Каждый ГГ постепенно становится более направленным, «предпочитая» прямое направление по мере роста частоты. Двухполосная конструкция с 30 сантиметровым басовиком неидеальна потому, что на переходе к, обычно, 2-3 сантиметровой пищалке (переходная частота в этом случае обычно где-то 2-3 кГц), басовик становится весьма и весьма направленным, а пищалка из-за малого размера «запускается» с широкой дисперсией. Этот разрыв в направленности и есть то, что служит причиной появления внеосевых проблем, описанных выше на Рис. 1 (в том примере басовик «предавал права» среднечастотнику в районе 500Гц, а среднечастотник пищалке – в районе 2-3кГц).

Второй причиной не пытаться реализовать все на базе одного ГГ является то, что диафрагмы гнутся и резонируют на определенных частотах. В идеале хорошо было бы заиметь диафрагму, которая была бы идеально жесткой и двигалась бы как поршень на всех частотах. Большие басовики изъявляют желание резонировать на частотах, лежащих в самой важной части частотного диапазона (в дальнейшем ЧД), куда они и добавляют серьезные ящичные, трубные и гнусавые призвуки голосам и инструментам. В результате у нас появляется вторая причина для использования переходов (или кросоверов) к ГГ с меньшей диафрагмой для передачи верхнего баса и СЧ. На еще более высоких частотах тоже самое происходит и со среднечастотниками. Их диафрагмы «разгоняются» и резонируют на частотах, которые приводят к жесткому и резкому звучанию ВЧ. Поэтому мы и вводим в игру пищалки, которые, будучи сконструированы грамотно, резонируют на частотах, не слышимых человеческим ухом.

Диафрагмы самых первых ГГ, конической формы, делались из бумаги. Во многих случаях делаются они из нее и сейчас, хотя это уже совсем не та бумага, что была тогда, а сильно «продвинутая». Но, тем не менее, бумага – это адская смесь из всяких ингредиентов, контролировать производство которой невероятно сложно, и которая, кроме того, подвержена изменениям в зависимости от температуры, влажности и «усталости». Как следствие разработчики выискивают более совершенные материалы: жесткие, легкие, прочные, хорошо поддающиеся демпфированию, недорогие и, главное, легко тиражируемые, особенно для целей массового производства.

За все эти годы мы видели конуса и купола, сделанные из всяких разновидностей пластика, включая популярный полипропилен, волокон и тканей (например, шелка, стекла, кевлара или карбона), композитные материалы с усилением и металлы вроде алюминия, титана, бериллия, а также ламинаты из различных веществ. Все из них работают. Некоторые очень даже хорошо. В принципе есть два различных подхода к снижению слышимой окраски звучания, появляющейся из- за резонансов в диафрагмах.

Первый подход заключается в том, чтобы позволить диафрагме резонировать в предназначенной ей полосе частот, но при этом попытаться снизить добротность резонанса (или, иными словами, склонности «звенеть» и «гудеть») за счет выбора материала с хорошим механическим демпфированием. Как правило, к таким материалам относятся материалы, не содержащие металла. Когда-то давно это называлось «контролируемым разгоном», а идея заключалась в том, что, позволяя большим конусам «разгоняться», мы тем самым вроде как улучшаем дисперсию на ВЧ, избегая необходимости установки среднечастотника. Увы, большинство таких решений работало не очень хорошо, и на смену им пришли многополосные системы, по крайней мере, там, где это позволяли стоимостные соображения. Мы и по-прежнему используем эластичные материалы в наших системах, но посредством пристального изучения свойств материалов нам удалось установить гораздо более серьезный контроль над тем, как именно и насколько сильно они резонируют.

Второй подход заключается в использовании очень жестких материалов для диафрагм, за счет применения которых резонансы сдвигаются вверх по частоте, причем настолько, чтобы выпасть за пределы ЧД, в котором планируется использовать тот или иной ГГ. Стандартная проблема с металлическими конусами и куполами такова, что уж если они «разгоняются» – а они в конце концов «разгоняются» – они звонят как колокола. Эти материалы обладают низкими механическими потерями и высокодобротные резонансы для них типичны, что придает их звучанию неподражаемый «металлический» тембр. Однако и в этой области наметился прогресс, а отдельные разработки так и вовсе свободны от резонансов в полосе частот, на которую они рассчитаны.

Трюк состоит в том, чтобы вывести резонансы за порог слышимости. Если их не слышно, значит, фактически, их как бы не существует. И это справедливо для обоих подходов описанных выше. Трюк этот очень непростой, поскольку мы, люди, очень и очень чувствительны к резонансам. Если хорошенько подумать, то станет ясно, почему. Потому что все звуки, которые нас интересуют, звуки голосов и музыкальных инструментов, являются составляющими многих резонансов. Именно нюансы всех этих резонансов, их интенсивность и добротность позволяют нам распознавать различные голоса, когда кто-нибудь говорит нам «Привет!» в телефонной трубке. Именно различия в подборке резонансов отличают музыкальные инструменты, играющие одну и ту же ноту. Нота, сыгранная на скрипке и на виолончели имеют одну и ту же высоту тона, но совершенно разный тембр. Мы, люди, так устроены, чтобы слышать резонансы и тембральные различия. И не удивительно, что основные жалобы слушателей на АС связаны с нежелательной окраской звучания обусловленной именно резонансами.

В качестве примера того, насколько же мы, люди, чувствительны (Рис. 4), можно привести 3 резонанса с различной добротностью (узкий и высокий с Q=50, визуально вдвое меньший и вдвое более широкий c Q=10, и очень пологий и пространный с Q=1), все из которых находятся на пороге заметности при прослушивании оркестровой музыки – одного из самых показательных во всех отношениях сигналов. Хотя все они выглядят по-разному, для слуха они все равнозаметны. Вот почему психоакустические исследования так важны. Они помогают нам понять зачастую нелинейные связи, которые существуют между тем, что мы слышим и тем, что мы измеряем.

Сюда же (к Рис. 4) можно добавить, что популярное словесное описание АЧХ как 20Гц-20кГц +/-3дБ не значит вообще НИЧЕГО, если к нему не прилагается график. Поскольку цифры цифрами, но хорошо бы еще при этом иметь представление, является ли отклонение широким горбом (т.е. серьезной проблемой) или узким пичком (возможно безвредным). Разброс в +/-1дБ, впрочем, привлек бы мое внимание и без всяких графиков. Из Рис. 4 также следует, что для обнаружения этих слышимых резонансов измерения должны проводиться с достаточным разрешением по частоте. Большинство же данных, которые можно увидеть в документации производителей или различных журналах НЕ отличаются сколь бы то ни было приличным разрешением, которое позволяло бы рассмотреть эти отклонения вообще или (если их и видно) интерпретировать их более или менее реалистично.

Рис. 4 Отклонения АЧХ, обусловленные резонансами с различной добротностью (Q), когда они были подобраны по уровню так, что становились едва заметны на примере симфонической музыки, взятой в качестве тестового сигнала. ВНИМАНИЕ: не обращайте внимание на положение резонансов на шкале частот — на всех СЧ и ВЧ они практически одинаково заметны.

Итак, начав обзор с сырых начинаний в области колонкостроения, куда же мы пришли в ее конце? Достигли ли мы нирваны полной прозрачности?

Для того чтобы с точки зрения слуха сделать это предположение верным, нам пришлось бы поверить в то, что все записи, которые мы слушаем, были сделаны без тембральных искажений. Это явно не так и самой главной причиной тому служит тот факт, что разнообразие студийных мониторов и самих студийных помещений столь же велико, как и разнообразие АС, предназначенных для домашнего использования, и самих КдП. Мониторы используются для подбора микрофонов и электронной обработки (если таковая необходима) которые «запечатлевают» и создают записанный звук. Тот факт, что записи осуществляются с окраской – совершенно нормальное явление. Окраска добавляется в процессе самой записи и отражает состояние оборудования мониторинга. Если мониторы были слишком «яркими», записи имеют тенденцию выходить «тускловатыми» и наоборот. До тех пор, пока мы не сможем быть уверены в том, что система аудиомониторинга была нейтральна настолько же, насколько и наша домашняя система, мы никогда не сможем сказать, было ли сделано то, что мы слышим, умышленно, в рамках, так сказать, «Искусства» или нет. Удручающе, не так ли?

Тем временем разработчики АС постепенно овладевают наукой создания ГГ для АС и систем, которые приближаются к ИДЕАЛЬНЫМ. Возьмем для примера два ГГ, отличающиеся только материалом диафрагм и предназначенные для воспроизведения как басов, так и СЧ (оба в корпусах) и проведем аксиальные измерения (Рис. 5). Очевидно, что при рассчитанной для данных динамиков кроссоверной частоте в 2.5 – 3 кГц, алюминиевый конус справляется со свой задачей очень хорошо. Однако когда он начинает резонировать, он делает это с присущей металлу энергией – в районе 4.5 кГц получается хороший высокодобротный резонанс с огромной амплитудой, который достаточно близок к кроссоверной частоте, чтобы представлять собой слышимую угрозу. Для сравнения взглянем на такую же кривую, снятую для конуса из нового керамического материала ламинированного алюминием. Видно, что такой конус резонирует на более высокой частоте, что обусловлено повышенной жесткостью материала, но резонанс этот лучше задемпфирован (его добротность меньше) и имеет меньшую амплитуду.

Рис. 5 Измерение, проведенное на оси 16.5 сантиметрового мидбасового ГГ с конусом, сделанным из алюминия (верхняя кривая) и керамо-алюминиевого ламината (нижняя кривая).

После того, как эти ГГ соединяются с кроссовером (Рис. 6), высокодобротный резонанс алюминиевого конуса по-прежнему очевиден на срезе кроссовера и, следовательно, все еще представляет собой определенную угрозу окрашивания. Наличие дополнительных фильтров в кроссовере могло бы помочь, но лучшим решением будет использование ламинированного конуса, резонанс которого едва виднеется в самой нижней части затухательного среза – он не только выше по частоте, но и еще примерно на 10дБ меньше по амплитуде, что, как известно, находится ниже порога слышимости. Вот это уже рискованно близко к теоретическому идеалу.

Рис. 6 ГГ из предыдущего рисунка после добавления кроссоверов.

В дополнение к привычным АЧХ, только об одной конкретной части которых мы только что говорили, разработчики ГГ подтверждают работу своих разработок еще и наблюдениями того, как именно движется поверхность конусов на различных частотах. Делается это при помощи прибора, который называется сканирующим лазерным виброметром. Наблюдения за поведением ламинированного 16.5-сантиметрового конуса (Рис. 7) показывают, что все точки его поверхности на частоте 3.5 кГц (чуть ниже частоты резонансного излома первого, просто алюминиевого конуса) движутся в унисон, как поршень. На более низких частотах этот ГГ ведет себя не менее хорошо.

Рис. 7 Измерение движения 16.5 сантиметрового конуса из керамо-алюминиевого ламината на частоте 3.5 кГц, проведенное при помощи сканирующего лазерного виброметра.

Рис. 8 Измерение движения 16.5 сантиметрового конуса из композитного материала, усиленного тканью, на частоте 3.5 кГц, проведенное при помощи сканирующего лазерного виброметра.

Для сравнения можно взглянуть на работу такого же конуса, сделанного из усиленного тканью композитного материала (Рис. 8) – из-за гораздо меньшей механической жесткости он демонстрирует очень заметный резонанс на той же частоте. В одно и то же время различные части конуса движутся в различных направлениях, что на жаргоне называется «разгоном». У таких конусов тоже есть шанс звучать неплохо, но только лишь если материал рассчитан с учетом достаточных механических потерь, которые могли бы помочь задемпфировать и вывести резонансы за порог слышимости.

Целью всех этих примеров является демонстрация того, как далеко мы продвинулись с тех самых «старых добрых времен». Вы только что прочитали о ГГ, модель которого была сначала разработана на компьютере, и которая была потом использована для разработки «правильного» материала для диафрагмы, а все эти усилия в результате материализовались в мидбасовом динамике, у которого в предназначенной ему полосе частот (40Гц – 3кГц) напрочь отсутствуют слышимые резонансы. Разработчик ГГ хорошо постарался, но работа системного инженера еще не закончена. Именно он должен теперь добиться того, чтобы кроссоверы не нарушили целостности звучания в переходных областях между басовиками и среднечастотниками, между среднечастотниками и пищалками. Кроме того, он не должен позволить резонансам АО и дифракции подпортить великолепную работу динамиков.

Теперь нам остается рассмотреть следующий большой вопрос, как же резонансы КдП влияют на звучание АС. Но это уже отдельная история.

Системы стереофонического и многоканального «обступающего» (или, как у нас порой говорят, сурраундного [от англ. surround]) звука являются процессами кодирования/декодирования, в которых АС и КдП являются доминирующими факторами. Вместе они оказывают влияние на тембр, динамический диапазон, а также на эффекты направленности и пространственности – иными словами, практически на все, что имеет большое значение для требовательного слушателя. Звуки, приходящие к ушам, представляют собой единственную информацию, с которой приходится работать слуховой системе. Если эти звуки в различных условиях различны, то и ощущения будут различны.

Единственным реальным решением является установление контроля над этими вариациями и, в конечном счете, стандартизация важнейших факторов. Проблема заключается в том, что ни для АС, ни для КдП промышленного стандарта не существует. В этой статье мы попытаемся извлечь самое лучшее из этой несовершенной системы путем выявления важнейших переменных в системе «АС-КдП» и обсуждения методов их измерений и контроля над ними.

1. Цель

Как правило, все мы стремимся к созданию некого подобия «реалистичности», что бы под этим ни понималось. Связь между качеством звука, ощущаемым в записи, и оным в концертном выступлении хоть и тесна, но несовершенна. В обычной комнате соображения практического характера делают создание реально впечатляющего ощущения нахождения в, скажем, концертном зале, практически нереальным.

Определенная часть трудностей связана с ограничениями, накладываемыми традиционными двухканальными стереосистемами. Все преимущества стереозвука могут слышать только те слушатели, которые находятся на оси симметрии АС, причем с увеличением расстояния от последних эффект имеет тенденцию пропадать. Обычные технологии стереозаписи являют собой результат проб и ошибок в стремлении извлечь максимум из системы, которая не в состоянии воссоздать все впечатления направленности, которые, возможно, являлись частью оригинального концерта. Разнообразие направленностей звуков, доходящих до ушей слушателя, значительно снижается по сравнению с любым живым выступлением.

В результате строгий реализм становится недостижимой целью, а потому мы пытаемся хотя бы приблизиться к нему настолько близко, насколько это позволяют нам ограничения, накладываемые нашей аппаратурой. Однако для основной массы записанной музыки реализм как цель – попросту неуместное понятие. В популярной музыке, например, оригинальное «исполнение» происходит в звукостудии во время окончательного сведения (микширования). Поскольку студии звукозаписи не стандартизованы, то понять, что же действительно было в оригинале невозможно, если конечно, Вы не присутствовали при записи…

В попытке привнести в процесс воспроизведения оттенок «пространственности» АС делаются с различной направленностью – начиная от обычных с фронтальным излучением, проходя через биполи (двунаправленные синфазные), диполи (двунаправленные противофазные), преимущественно отражающие и заканчивая всенаправленными. Такие АС обеспечивают слушателей сильно различающимися сочетаниями прямых и отраженных звуков, главенствующая роль в которых отводится КдП. Таким образом, стерео – это фактически совсем даже не система, а скорее основа для индивидуального экспериментирования.

Многоканальные системы предлагают частичное решение, заключающееся в том, что каналов попросту больше и, как следствие, больше направлений, из которых звуки могут казаться приходящими. В какой-то мере такое решение дает независимость от комнатной акустики, поскольку имеется больше «реальных», а не «отраженных» источников звука. И все же мультидирекциональные АС, включая дипольные, опираются на отражения, поэтому есть примеры, в детали которых следует вникнуть каждому.

Стандартизация кинопромышленностью пусть даже небольшого числа из множества наиболее очевидных переменных невероятно помогла в достижении некоторого постоянства в создании многоканальных саундтреков к фильмам. Следовательно, то, что мы слышим в кино – это то же самое, что было слышно на этапе дубляжа, когда компоновался саундтрек. Хорошая инженерная практика и программа Home THX пытаются продолжить эту линию и в наши дома.

Интересно посмотреть, как будет развиваться многоканальная музыка…

1.1 Причина и следствие в комбинациях «АС-КдП»

Точность воспроизведения звука АС зависит преимущественно от величины линейных (частотных и фазовых) и нелинейных (гармонических и интермодуляционных) искажений, а также от степени направленности во всём частотном диапазоне. В условиях полного отсутствия отражений, направленность АС никакой роли играть не будет, поскольку слышно будет только звук, излучаемый вдоль одной единственной оси – предпочтительно, лучшей. В реальных же помещениях к слушателю, в конечном счете, приходят почти все звуки, излученные АС во всех направлениях.

Направленность АС, их местоположение и акустические свойства КдП определяют спектр, амплитуду, направленность и временную задержку всего того сонма звуков, которые достигают ушей слушателя. Все эти звуки сливаются и взаимодействуют физически на входе в ушную раковину, а на уровне восприятия – в слуховых системах и мозгах слушателей. В результате «под удар» может попасть (и в большинстве случаев попадает) почти каждый перцепционный аспект стереофонического воспроизведения звука.

Изменения в ощущаемом пространственном представлении или, иначе, формировании звукового образа (так называемая глубина сцены):

  • Отраженные звуки изменяют «размеры» отдельных голосов или инструментов, особенно тех, что находятся в горизонтальной плоскости.
  • Отраженные звуки изменяют местоположение (по ширине или по глубине сцены) отдельных звуковых образов и, наконец,
  • Отраженные звуки влияют на ощущение пространственности или охвата (опять же в основном на те, что имеют место в горизонтальной плоскости)

Изменения качества звучания или, иначе, тембральная окраска, вызванные:

  • Акустическим сопряжением звука с системой стоячих волн (резонансами КдП или модами, напрямую связанными с отношением длин сторон помещения).
  • Нахождением слушателей на различных осях прямого звука АС, получающих в результате различные начальные звуки.
  • Акустической интерференцией (гребенчатой фильтрацией), имеющей место, когда прямой звук и один или несколько наиболее интенсивных раннеотраженных накладываются возле ушей слушателя.
  • Частотно-зависимыми изменениями звукопоглощающей способности границ КдП и мебели, изменяющими спектры отраженных звуков и, следовательно, суммарное звуковое поле возле ушей слушателя.
  • Интенсивными отражениями низкокачественных внеосевых звуков АС, которые искажают спектр суммарного звукового поля (собственно, вариация на предыдущую тему).
  • Перцепционным «усилением» незадержанных резонансов при отражениях и реверберации (т.е. когда некоторые звуки лучше слышны в сложном звуковом поле) и
  • Перцепционное «подавление» задержанных звуков при отражениях и реверберации (т.е. когда некоторые звуки хуже слышны в сложном звуковом поле).

Короче говоря, физические характеристики АС и КдП могут изменять ВСЕ воспринимаемые качества звука, считающиеся фундаментальными для удовлетворительного воспроизведения звука.

2. Физические переменные

Хотя значительные зоны перекрытия аспектов и существуют, как станет ясно в дальнейшем, для разъяснительных целей будет проще разделить все переменные КдП на 3 категории:

  1. Размеры и пропорции
  2. Положение АС и слушателя
  3. Поглощение и отражение звука

2.1 Размеры и пропорции КдП

У комнат есть акустические резонансы или, как еще говорят, моды. Соотношения, в которых находятся длина, ширина и высота комнаты, определяют распределение мод по частоте, т.е. иными словами задают местоположение пучностей и провалов в этом распределении. Размеры как таковые определяют частоты, на которых имеют место резонансы, т.е. то, будут ли отдельные, имеющие огромное значение для воспроизводимой музыки, частоты усиливаться или же подавляться. В идеально прямоугольных комнатах с идеально ровными и отражающими поверхностями (стенами, полом и потолком) эти резонансы легко могут быть вычислены по следующей, хорошо известной формуле:

где

f – частота N-ной моды
Nx, Ny, Nz – целые числа от 0 до, скажем, 4, выбираемые независимоLx, Ly, Lz – размеры помещения в метрах (длина, ширина, высота) в метрах
с – скорость звука в воздухе при комнатной температуре (~345 м/с)

Для вычисления всех мод необходимо перебрать все возможные комбинации из трех целых чисел Nx, Ny, Nz. На практике же достаточно вычислить только низкочастотные моды, т.е. ограничиться максимальным N=4.

Отдельные моды описываются различными комбинациями из целочисленных Nx, Ny, Nz. Например (1, 0, 0) описывает моду первого порядка вдоль стороны, принятой за «x». (0, 2, 0) описывает моду второго порядка вдоль стороны, принятой за «y», и так далее. В случае, когда два из трех целых чисел равны 0, формула значительно упрощается и позволяет чуть ли не в уме вычислять частоты стоячих волн, возникающих между заданной парой противостоящих стен вдоль одного из размеров комнаты.

f (1,0,0) = c/2/L

Эти моды называются осевыми или аксиальными и, как правило, являются самыми интенсивными из всех (а также самыми быстро вычисляемыми). Если у Вас нет более важных дел, возьмите и просчитайте аксиальные моды для каждой пары противолежащих поверхностей, т.е. по длине, ширине и высоте Вашей комнаты.

Тангенциальные моды возникают вследствие отражения звука от четырех поверхностей, и мечущегося по комнате параллельно двум оставшимся. Эти моды вычисляются путем приравнивания 0 только одного из целых чисел. Например (1, 1, 0) описывает моду первого порядка в плоскости «x-y». Эти стоячие волны порождаются 4-мя стенами и возникают параллельно потолку и полу.

Косые моды взаимодействуют со всеми сторонами помещения. В каждом «контуре» (сечении) комнаты происходит большое число отражений и, поскольку при каждом отражении энергия звука теряется, эти моды являются наименее интенсивными из всех. Вычисляются они путем всевозможных комбинаций трех целых чисел, ни одно из которых не равно 0.

2.1.1 «Идеальная» комната

Долгое время считалось, что равномерное распределение комнатных мод по частоте – вещь хорошая. Концентрации (скопления) мод могут служить причиной искусственного подчеркивания определенных частот, а провалы в модальном распределении могут делать отдельные частоты совершенно неслышимыми.

На протяжении многих лет выдвигались предложения самых различных соотношений сторон, обеспечивающих якобы превосходное модальное распределение. Все эти исследования далеко не всегда учитывали три проблемы, возникающие в реальных КдП, которые делали предсказания ненадежными.

  • Первая. Расчеты предполагали, что комната идеально прямоугольная и построена из идеально ровных, идеально отражающих поверхностей. В реальной жизни все далеко не так просто, поскольку в большинстве комнат присутствуют неоднородности, большие поверхности, поглощающие звук (они вибрируют), меблирование и т.д. Эти отклонения от теоретического идеала приводят к ошибкам в расчетах частот.
  • Вторая. Не все моды одинаково важны. В общем случае аксиальные моды являются доминирующим фактором. Оценка комнат должна поэтому включать в себя взвешивание, при котором аксиальные, тангенциальные и косые моды рассматриваются именно таком порядке значимости.
  • Третья. Расположение источников звука и слушателей в практической (реальной) обстановке не дает однородного акустического сопряжения с комнатными модами. В результате АС не поставляют энергию однородно всем существующим модам, а слушатели не сидят в местах, где они могли бы услышать эффекты даже от тех мод, что возбуждены.

Эти осложнения означают, что в практических ситуациях предсказательные схемы могут быть полезны, но вряд ли будут полностью удовлетворительны. Измерения «на месте» могут оказаться единственным способом определения, что же происходит на самом деле.

Рис. 1 Размещение АС на полу в самом углу комнаты обеспечит возбуждение всех мод низких порядков (в любой точке пересечения трех плоскостей комнаты – пол, стена, потолок – все моды имеют зону высокого давления). Размещение микрофона в противоположном углу (на полу или потолке) обеспечит детектирование всех этих мод. Очевидно, АС должна быть закрытого типа или с фазоинвертером (т.е. являться источником давления), а микрофон должен быть всенаправленным с хорошей чувствительностью на НЧ (т.е. являться детектором давления).

Рис. 2 Этот график зависимости давления от частоты полезен только для определения частот сильнейших мод в комнате. То, что данные, полученные с его помощью, будут отличаться от данных, полученных при помощи расчета – ситуация достаточно распространенная. Причиной тому служит «реальность» комнаты, отклоняющая ее параметры от «идеальных». Обратите внимание на значительное акустическое усиление, имеющее место на резонансных частотах.

Для понимания же, как поведет себя комната по отношению к реальной стерео- или многоканальной системе, это измерение бесполезно. Выдвижение АС из угла сразу же изменит характер возбуждения мод, а перенос микрофона в другое место сразу же «изменит» моды, на которые он реагирует.

Однако если комната в хорошем приближении прямоугольна, то вычисление модальных частот может оказаться очень даже полезным делом и помочь избежать очевидных проблем с размерами (пропорциями) строящихся помещений, а также выявить проблемные моды в уже готовых. На Рис. 3 показаны модальные распределения для одной комнаты, которую с большой вероятностью можно назвать проблематичной, и другой, более-менее благополучной. Обратите внимание, что в «плохой» комнате, реальных проблем всего 2:

  1. Распределение мод по частоте неоднородно и
  2. Одни и те же комбинации мод повторяются.

Вторая комната лучше в обоих отношениях.

Вот такие вот элементарные расчеты «на салфетке» просто необходимы перед началом «заселения» комнаты. Разумеется, если комната отчаянно непрямоугольная, просто так посчитать ничего не получится, а жизнь усложнится во сто крат.

Рис. 3 (верхний) Аксиальные моды, вычисленные для прямоугольной комнаты. „Д», „Ш» и „В» отвечают за моды по длине, ширине и высоте комнаты соответственно. Размеры комнаты состоят между собой в очень простых соотношениях и, как следствие, имеют место систематические повторения одних и тех же аксиальных мод и точно также систематических провалов. Такая комната вполне может оказаться проблематичной.

Рис. 3 (нижний) Аксиальные моды, вычисленные для комнаты, размеры которой были несколько скорректированы, чтобы обеспечить более благоприятное распределение. За счет того, что эта комната несколько больше, аксиальные моды начинаются с более низких частот и расположены плотнее. За счет нецелого отношения сторон на самых низких частотах моды не совпадают совсем, а на более высоких частотах, они смешиваются в различных комбинациях.

Можно услышать мнения, что непрямоугольные комнаты имеют бОльшие преимущества перед прямоугольными. При этом рассуждают так: если звуки будут отражаться в направлениях иных, чем прямо навстречу параллельной стене, создание стоячих волн вроде как будет подавляться, а диффузия возрастет. В действительности же скашивание поверхностей комнаты имеет, конечно, огромное влияние на модальную структуру, но сами моды не исчезают. Все сводится к тому, что степень вариаций в звуковом давлении по всей комнате остается примерно такой же, но вот частоты различных мод меняются самым бессистемным образом, а узловые линии репозиционируются совершенно неочевидным образом. В результате предсказания, обсуждавшиеся выше, становятся невозможны, так что для того, чтобы спрогнозировать происходящее на практике, приходится прибегать к конечно-элементному анализу или моделям. Одним словом, в ряде случаев это является серьезным недостатком, как мы увидим в части 2.2.

В других случаях, таких как, например, реверберационных камерах, предназначенных для проведения акустических измерений, преимущества перевешивают недостатки. Если модальное смешение, сгенерированное непараллельными поверхностями, оказывается желанным, то интересно отметить отсутствие необходимости в этом случае гнуть все поверхности. В большинстве случаев оказывается более чем достаточно скосить лишь одну из стен.